
Q:    When should I use NXLocalString() and when should I use
NXLocalizedString() in my code?    The localization chapter in
/NextLibrary/Documentation/NextDev/Concepts just discusses
NXLocalizedString().
A: NXLocalString() is an old name, and you should use NXLocalizedString()
instead.    The name NXLocalString() is only there for compatibility.   

Q: The program genstrings complains if NXRunLocalizedAlertPanel() contains
a constant (like from a #define) instead of a string.    This means that we may end
up having "OK" defined multiple times in the string table, since most alert panels
include an "OK" button.    Should I avoid using NXRunLocalizedAlertPanel()?
A: NXRunLocalizedAlertPanel() will be obsolete in the future, and we strongly
recommend that you use NXRunAlertPanel() instead.    It's true that genstrings
doesn't eliminate duplicate entries from NXRunLocalizedAlertPanel().

Q: The localization chapter in /NextLibrary/Documentation/NextDev/Concepts
suggests using #define to retrieve a string just once. It seems like if we want to

avoid extra lookups, we should define a variable, initialize it    once to the result of
an NXLocalizedString(), and then use it where necessary.
A: You are right.    If you want to avoid extra lookups, you should define a variable
to have the value.    For example, you could do the following:

const char *fooString = NULL;
#define FOO_STRING (fooString = fooString ? fooString :

NXLocalizedString("Foo", NULL, "Nonsense."))

That way, the string will only be looked up if it is needed and will only be looked up
at most once.    The macro is a convenient way to make sure that the string has
been initialized each time you want to use it, especially if you want to use it as an
argument.

Q: How big a performance hit do I take for a lookup from a string table?    At what
size is it worth breaking up a string table into multiple files?
A: Lookups are cheap.    It's only worth going to multiple files if you have hundreds

of entries, or if you have a large number of entries which are almost never
accessed or which are only accessed together such as error conditions or strings for
a certain panel like an Inspector Panel.

QA866

Valid for 3.0 only

